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Abstract

In the last decade, it became clear that electromagnetic (gyro)kinetic particle-in-cell (PIC) simulations are very demand-
ing in respect to numerical methods and the number of markers used. The Monte Carlo discretization of the gyrokinetic
equations leads to a severe signal-to-noise problem: the statistical representation of the physically irrelevant but numeri-
cally dominant adiabatic current causing a high statistical noise level. The corresponding inaccuracy problem is very pro-
nounced at high plasma b and/or small perpendicular wave numbers k^.

We derive several numerical schemes to overcome the problem using an adjustable control variates method which
adapts to the dominant adiabatic part of the gyro-center distribution function. We have found that the inaccuracy problem
is also present in the quasi-neutrality equation as a consequence of the pi-formulation [T.S. Hahm, W.W. Lee, A. Brizard,
Nonlinear gyrokinetic theory for finite-beta plasmas, Phys. Fluids 31 (1988) 1940]. For slab simulations in the magneto-
hydrodynamic (MHD) limit k? ! 0, the number of markers can be reduced by more than four orders of magnitude com-
pared to a conventional df scheme.

The derived schemes represent first steps on a road to fully adaptive control variates method which can significantly
reduce the inherent statistical noise of PIC codes.
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1. Introduction

The df method [1,2] is widely used for electrostatic particle-in-cell (PIC) simulations to discretize the
gyro-center distribution function fs of a species s. Its basic idea is the ansatz fs ¼ f0s þ dfs where the distri-
bution function fs is split into a time-independent background f0s and a time-dependent perturbation dfs. As
long as the perturbed part dfs remains small in comparison to the background part f0s which is often chosen
to be a Maxwellian, the df method reduces the statistical noise. However, the conventional df method as a
noise reduction technique is an independent reinvention by the plasma physics community of a variance
reduction method which can be traced back [3] to the standard Monte Carlo method called control variates
method.

In principle, it is also possible to use the df method for electromagnetic gyrokinetic PIC simulations [4], but
the time step can be quite restrictive and the required number of markers can be so large that PIC simulations
become impractical. Hence, in the past decade, many attempts have been made to improve electromagnetic
PIC algorithms in two respects: the relaxation of the time step criterion and the reduction of statistical noise.
A key part of these efforts was a modification of the df ansatz known as the split-weight scheme.

The original split-weight scheme for electrostatic simulations [5] expanded the dfe ansatz for electrons by
their adiabatic response ef0e/=ðkBT eÞ to the electrostatic potential /(t). Its benefit is primarily the relaxation
of the time step criterion, although there is some reduction in noise. The finite-b extension of the split-weight
scheme is given in Ref. [6]. In this reference, with the focus on noise reduction, the adiabatic response
ef0e

~weff=ðkBT eÞ of the electrons is extended to the effective potential ~weffðtÞ ¼ /þ
R

oAk=ðcotÞdxk.
The original split-weight scheme was generalized [7] to overcome both the constraint on the time step and

the inaccuracy problem at high beta, b � 1%. It uses the so-called pi-formulation [8] of the gyrokinetic Vlasov-
Maxwell system (an alternative vi-formulation suffers from the numerical instability associated with the free
streaming of the particles, see Ref. [9] for details). The inaccuracy problem, also called the cancellation prob-
lem (see e.g. Ref. [4]), results from the fact that the physically relevant nonadiabatic part of the electron dis-
tribution function is overwhelmed by the adiabatic response to the magnetic potential Ai. It is a severe signal-
to-noise problem especially at high beta and/or small perpendicular wave numbers k^ where the relevant sig-
nal is so small that it is usually swamped by the statistical noise.

An enhanced control variates method [10] has been presented to solve the inaccuracy problem and not the
constraint on the time step due to the fast parallel electron motion. The focus of this paper is to generalize this
method. In contrast to the split-weight scheme, a modification of the dfe ansatz is not necessary. Instead, on
top of the dfe ansatz, a further adjustable control variate is used to extract the dominant adiabatic part of the
gyro-center distribution function from the statistical marker representation and to transfer it into an analytic
representation. As consequence, the statistical noise level of the PIC method is significantly reduced. This is
done for both the charge-assignment in the quasi-neutrality equation and the current assignment in Ampère’s
law. It is important to note that the inaccuracy problem is also present in the quasi-neutrality equation as a
consequence of the pi-formulation and has to be handled properly in both field equations.

Three direct and two iterative schemes are derived based on the adjustable control variates method. A rig-
orous derivation of the two iterative schemes includes the specification of the condition of convergence. All
five schemes are benchmarked for a linear slab problem in the magnetohydrodynamic (MHD) limit
k? ! 0. The slab problem has the advantage that it fully expresses the inaccuracy problem and the corre-
sponding solution for the dispersion relation is known analytically.

The different schemes represent the first steps in a systematic approach to the generalization of the idea of
an adjustable control variate to a vast variety of PIC simulations. The aim is a fully adaptive control variate
scheme which automatically extracts a large fraction of the gyro-center distribution function to transfer it into
a ‘‘noise free’’ analytic representation.

The organization of the paper is as follows: The pi-formulation of the gyrokinetic model is introduced in
Section 2. The PIC discretization of the model equations leads to the inaccuracy problem (Section 3). This
problem is connected to the discretization of the field equations (Section 4). The control variates method is
introduced (Section 5), discretized (Section 6) and adapted to our requirements (Section 7). In Section 8, five
schemes are presented which overcome the inaccuracy problem using the control variates method. The numer-
ical results of simulations of a slab problem in the MHD limit using these schemes are presented in Section 9.
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2. The gyrokinetic model

The nonlinear gyrokinetic equations in the pi-formulation derived from the gyrokinetic Vlasov equation [8]
are used to calculate the time evolution of the gyro-center distribution function fsðR; pk; ~lÞ of species s = i, e
(ions and electrons)
dfs

dt
¼ ofs

ot
þ dR

dt
� rfs þ

dpk
dt

ofs

opk
¼ 0; ð1Þ
where R; pk and v? are the gyro-center position, parallel momentum per unit mass and perpendicular com-
ponent of the gyro-center velocity with respect to the magnetic field direction. The magnetic moment per unit
mass, ~l, of the gyro-center is given by
~l ¼def v2
?

2B
and

d~l
dt
¼ 0: ð2Þ
The equations of motion for the perturbed gyro-center trajectories in reduced phase-space ðR; pk; ~lÞ are
dR

dt
¼ pk �

qs

ms
hAkis

� �
bH � 1

qsB
H

k
ðms~lrBþ qsrhweffisÞ � eB; ð3Þ

dpk
dt
¼ �~lrB� qs

ms
rhweffis � bH ð4Þ
with / and Ai the perturbed electrostatic and magnetic potentials, BH

k ¼ eB � r � AH and bH ¼ r� AH=BH

k .
Here, AH ¼ Aþ ðmspk=qsÞeB is the so-called modified vector potential, A the magnetic vector potential corre-
sponding to the equilibrium magnetic field B ¼ r� A and eB ¼ B=B its unit vector, Xcs ¼ qsB=ms the cyclo-
tron frequency, and qs and ms the charge and mass of species s. The gyro-averaged effective potential seen by
species s is defined by
hweffis ¼
defh/is � pkhAkis: ð5Þ
The corresponding gyro-averaged potentials are defined as
h/isðR; ~lÞ ¼
def 1

2p

I
/ðRþ qsÞda; hAkisðR; ~lÞ ¼

def 1

2p

I
AkðRþ qsÞda; ð6Þ
where qs is the gyro-radius vector perpendicular to eB which can be parameterized by the gyro-phase angle a
qsðaÞ ¼
def

qs½cosðaÞe?1 þ sinðaÞe?2� and qs ¼
v?

XcsðRÞ
: ð7Þ
Note that we are not interested here in the actual direction of rotation of the physical particle of species s.
As long as the drifts of the unperturbed gyro-center trajectories do not lead the particles away from the flux

surfaces, the flux W and the particle energy per unit mass eE ¼ ~lBþ p2
k=2 are two invariants of the unperturbed

gyro-center trajectories. We define f0 as a local Maxwellian, a function of these invariants:
f0sðW; eEÞ ¼def n0sðWÞ
ð2pÞ3=2v3

thsðWÞ
exp �

eE
v2

thsðWÞ

" #
where vthsðWÞ ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT sðWÞ

ms

s
: ð8Þ
The quasi-neutrality equation and parallel Ampère’s law close the self-consistent gyrokinetic Vlasov-Max-
well system. Using the theory of Lie transforms (see Ref. [11]) the quasi-neutrality condition and Ampère’s law
take under the usual assumptions of an equilibrium Maxwellian distribution f0s and qshweffis=ðkBT sÞ � 1 the
form:
� en0

kBT i

ðh�/ii � /Þ � en0

kBT e

ðh�/ie � /Þ ¼ hnii � hnei; ð9Þ

bi

~q2
i

hAkii þ
be

~q2
e

hAkie �r2
?Ak ¼ l0ðhjkii þ hjkeiÞ; ð10Þ
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where
hnsiðxÞ ¼def
Z

fsðR; pk; ~lÞdðRþ qs � xÞd6Z; ð11Þ

hjksiðxÞ ¼
def qs

Z
pkfsðR; pk; ~lÞdðRþ qs � xÞd6Z ð12Þ
are the number and current density represented by the gyro-center distribution function fs in the pi-formula-
tion. The integration is performed over phase-space d6Z ¼ BH

k dRdpkd~lda. The thermal gyro-radius is
~qs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT s

p
=ðqsBÞ, the plasma beta corresponding to the particular species is bs ¼ l0n0kBT s=B2 and the

potentials averaged over the gyro-phase and over the Maxwellian background are defined as
h�/is ¼
def 1

n0ðxÞ

Z
f0sðR; pk; ~lÞh/isdðRþ qs � xÞd6Z; ð13Þ

hAkis ¼
def 1

n0ðxÞ

Z
f0sðR; pk; ~lÞhAkisdðRþ qs � xÞd6Z: ð14Þ
We assume here that the ion charge qi ¼ e and the electron charge qe ¼ �e have the same absolute values.
Hence, the ion and electron equilibrium densities are equal n0i ¼ n0e ¼ n0.

A long-wavelength approximation can be applied to the quasi-neutrality condition Eq. (9), and Ampère’s
law, Eq. (10). This leads to the gyro-dependent quantities of the ion gyro-average in Eqs. (13) and (14) being
expanded in Fourier space up to the order of Oðk?~qiÞ2, and the finite gyro-radius effects being neglected for the
electrons. Under this approximation the quasi-neutrality condition and Ampère’s law take the following form:
�r? �
en0

kBT i

~q2
ir?/

� �
¼ hnii � ne; ð15Þ

bi

~q2
i

Ak þ
be

~q2
e

Ak � r? � ½ð1� biÞr?Ak� ¼ l0ðhjkii þ jkeÞ: ð16Þ
3. The inaccuracy problem

On the left-hand-side of Ampère’s law, Eq. (10), we have the ion and electron skin terms:
bi

~q2
i

hAkii ¼
l0e2n0

mi

hAkii and
be

~q2
e

hAkie ¼
l0e2n0

me

hAkie; ð17Þ
where especially the electron skin term is large due to the small electron mass in the denominator. The adia-
batic part of the distribution function df ad

s for the effective potential hweffis is
df ad
s ¼ �

qsf0s

kBT s
hweffis ð18Þ
which is related to the dfe ansatz of the split-weight scheme of Ref. [6].
We split the currents on the right-hand-side of Ampère’s law into their adiabatic and nonadiabatic parts

using Eq. (18) and the definition of the current density, Eq. (12):
hjksi ¼ hjksi
ad þ hjksi

nonad with hjksi
ad ¼ q2

s

kB

Z p2
kf0s

T s
hAkisdðRþ qs � xÞd6Z: ð19Þ
Now, we see that the adiabatic current terms coincide with the skin terms in Eq. (17) which is a direct con-
sequence of the pi-formulation:
l0hjksi
ad ¼ l0n0q2

s

ms
hAkis ¼

bs

~q2
s

hAkis: ð20Þ
In other words, the skin terms on the left-hand-side of Ampère’s law, Eq. (10), cancel with the adiabatic
currents on the right-hand-side. Accordingly, only the nonadiabatic currents represent the physics:
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�r2
?Ak ¼ l0ðhjkii

nonad þ hjkei
nonadÞ: ð21Þ
If the numerical discretization of the currents has to represent both the adiabatic and nonadiabatic part, the
adiabatic part will become the dominant for the high beta case, b � 1%, and/or the magnetohydrodynamic
(MHD) limit k? ! 0. This can be seen by the ratio of the adiabatic and nonadiabatic currents:
hjkei
ad

hjkii
nonad þ hjkei

nonad
� be=~q2

ehAkie
r2
?Ak

: ð22Þ
While the adiabatic electron current scales linearly with be, the nonadiabatic part scales with k2
? which

makes the MHD limit k? ! 0 the most challenging case for PIC methods. The nonadiabatic part is a small
fraction of the total current, easily swamped by the discretization error unless the noise is made very small
(requiring a very large number of markers). However, the presence of a dominant adiabatic electron current
implies the presence of a dominant part responding adiabatically to the magnetic potential hAkie in the per-
turbation of the distribution function of the electrons:
df ad
e � �

epkf0e

kBT e

hAkie: ð23Þ
It is important to note that this causes not only an inaccuracy problem when calculating the electron cur-
rent density hjkei in Ampère’s law but also in the calculation of the electron number density hnei in the quasi-
neutrality equation.

As a consequence of the pi-formalism, there is an additional term
� e
kB

Z
pkf0e

T e

hAkiedðRþ qe � xÞd6Z ¼ 0 ð24Þ
on the right-hand-side of the quasi-neutrality equation, Eq. (9), which is usually not printed as analytically it
gives no contribution to the number density. However, the integrand can take large absolute values due to the
fast electron motion (large parallel momentum pi), which is a result of the small electron mass. Hence, if this
integral is calculated statistically by a discretization of Ne electron markers a potentially large statistical error
�ðN eÞ results from the discretization of the number density. As the integrand is proportional to the absolute
value of the magnetic potential, the statistical error � will increase with increasing hAkie. Although the inaccu-
racy problem in the quasi-neutrality equation is not as obvious as in Ampère’s law it has the same origin as the
cancellation problem.

4. Galerkin’s method in PIC applications

Considering the discretization of a function h(x) with finite elements, we want to review here on the very
basics of Galerkin’s method. A detailed introduction can be found e.g. in Ref. [12]. The discretization of
h(x) is given by
uðxÞ ¼
XM

j¼1

ĉjKjðxÞ; ð25Þ
where the finite element basis consists of the elements KjðxÞ. Supposed that a scalar product is defined by
ðu; vÞ ¼def
Z

uðxÞvðxÞdx ð26Þ
the Galerkin approach requires
ðu� h;KjÞ ¼ 0) ðu;KjÞ ¼ ðh;KjÞ 8Kj: ð27Þ

This can be expressed by the Galerkin matrix equation
XM

j¼1

âkjĉj ¼ b̂k k ¼ 1; . . . ;M ; ð28Þ
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where the mass matrix bA and load vector b̂ are defined as
âkj ¼def
Z

KjðxÞKkðxÞdx and b̂k ¼def
Z

hðxÞKkðxÞdx: ð29Þ
Essentially the load vector can be interpreted as the projection of the function h(x) onto the subspace
spanned by the finite element basis.

After solving the Galerkin matrix equation, Eq. (28), for ĉ the function u(x) is well defined at every point in
the domain (see Eq. (25)). Operators like integrals and derivatives acting on u(x) can be performed by just
letting them act on the elements KjðxÞ of the finite element basis. As direct consequence the finite element dis-
cretization gives an energy-conserving scheme [13,14] due to the well-defined gradient in the force calculation.
Complex geometries can be handled by appropriate coordinate systems (e.g. polar coordinates) so that the
geometrical issues are only a matter of the corresponding calculus of the finite elements KjðxÞ as can be seen
e.g. by the Jacobian of the integrals in Eq. (29).

The Galerkin approach is used e.g. in PIC simulations to discretize the number density which is defined as a
moment of the gyro-center distribution function f ðR; vÞ. If e.g. the number density should be evaluated for a
drift-kinetic charge-assignment, the load vector would be defined by the following integral over space and
velocity coordinates
�bk ¼def
Z Z

f ðR; vÞdðR� xÞKkðxÞdRdv dx: ð30Þ
Note that the shape factor (particle cloud) of the markers KkðxÞ is a natural consequence of the finite element
formalism.

Formally, one has to distinguish between the gyro-center coordinate R of the gyro-center distribution func-
tion and the spatial coordinate x which requires the usage of the d function in Eq. (30). However, in Sections 6
and 7 we will not make this distinction as we only consider the case of a drift-kinetic charge-assignment. Nev-
ertheless, for a gyrokinetic charge-/current-assignment the difference is crucial and will be handled with care in
the Appendices A and C.

Furthermore, in PIC simulation the gyro-center distribution is represented by a sum over d functions at the
marker positions [15,16]
f̂ ðR; pk; ~lÞ ¼
def
XN

p¼1

wpd
3½R� RpðtÞ�d½pk � pkpðtÞ�d½~l� ~lpðt0Þ�=½2pBH

k ðR; pkÞ�: ð31Þ
Let us define fp as the distribution function f averaged over the phase space volume Xp centered initially
around a marker p:
fp ¼def 2p
Xp

Z
Xp

f ðR; pk; ~lÞBHðR; pkÞdRdpk d~l: ð32Þ
Approximating f in the integrand as f̂ from Eq. (31) and using Liouville’s theorem for the constancy of Xp

we find the relationship between fp and the weight wp of marker p at the position ðR ¼ Rp; pk ¼ pkp; ~l ¼ ~lpÞ:

wp ¼ Xpfp: ð33Þ
The weights represent the number of physical particles contained in the volume Xp of marker p and are con-
stant in time for nonlinear collisionless gyrokinetic simulation, Eq. (1).

Inserting the discrete approximation of f from Eq. (31) into Eq. (30) the load vector or charge-assignment
vector is now defined by
bk ¼
def
XNs

p¼1

wpKkðxpÞ: ð34Þ
Hence, the charge-assignment procedure can be interpreted as a projection of a sum of d functions onto the
subspace spanned by the finite elements. The atomic process consists of the projection of each d function at the
marker position onto the finite element basis. Usually, the finite element basis is only able to produce a poor
approximation of the d function which could give due to aliasing even negative values in some regions of
space. The more markers we use, the better these undesired approximation effects cancel out each other.
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However, we have to question the approximation of the gyro-center distribution function by a sum over d
functions. Even for smooth distribution functions the approximation gets very spiky and cannot be expressed
properly by the finite element basis. Instead, we have to reinterpret the charge-assignment procedure as a sam-
pling process of a smooth function at the marker positions in phase-space. Hence, we have to take into
account the information about the smoothness of the distribution function into the charge-assignment
procedure.

In the following, this information will be included in the PIC simulation using the control variates method.
It provides the possibility to transfer part of the distribution function into an analytic representation. It guar-
antees that the derived algorithm is still convergent in the sense that it converges to the correct result for a
sufficiently large number of markers. But with a properly chosen control variate the convergence rate can
be significantly improved. In addition, the control variates method can be enhanced to fit to a certain extent
to the evolving gyro-center distribution function but it has to be assured by e.g. a least square fit procedure
that no noise is introduced by this adaptation process.

5. The control variates method

The key idea of the control variates method is to replace as much of the Monte Carlo estimate (the weights)
as possible by analytic or numerical calculations that are more accurate (see Ref. [3]). In the following, we
show how this can be done under the ‘‘direct df’’ method.

The right-hand-side of the quasi-neutrality equation, Eq. (9), can be rewritten in the form:
hnii � hnei ¼ �n0i þ hnii � �n0i|fflfflfflfflffl{zfflfflfflfflffl}
dhnii

�ð�n0e þ hnei � �n0e|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dhnei

Þ ¼ �n0i � �n0e|fflfflfflffl{zfflfflfflffl}
analytical

þ dhnii � dhnei|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
statistical

: ð35Þ
The n0s terms calculated from the local Maxwellian f0s of species s are analytically known, they can be rep-
resented directly in the finite element basis. The dns terms are the result of the PIC simulation and are calcu-
lated statistically in the charge-assignment procedure, Eq. (34), of the weights. The magnitude of the statistical
error inherent in the weight representation is proportional to the ‘‘size’’ of the distribution function repre-
sented. Hence, the decomposition, Eq. (35), is only advantageous if the perturbed distribution functions
dfs ¼ fs � f0s sampled for the calculation of the perturbed number densities d�ns (the charge-assignment pro-
cedure) are much smaller than the full distribution functions fs, in the sense kdfsk=kfsk � 1.

To take advantage of the control variates method the perturbed distribution functions dfs have to be known
to compute the dns in Eq. (35). Thus, the weights wsp of species s which are constant in time have to be dimin-
ished by the contribution of the (additive) control variate, the function �f s ¼ f0s, just for the charge-assignment
to become ‘‘noise reduced’’ weights:
�wspðtÞ ¼def
Xsp½fsðRpðt0Þ; pkpðt0ÞÞ � f0sðRp; pkpÞ� ¼ wsp � Xspf0sðtÞ: ð36Þ
The time-dependent positions of the markers along the perturbed trajectories of the gyro-centers determine
the value of f0sðtÞ and consequently of dfs needed for the noise reduction. In the framework of the control vari-
ates method, we establish a noise reduced ‘‘direct df’’ method identical to the method proposed in Refs.
[3,17,18].

However, the ‘‘direct df’’ method can be used only for nonlinear simulation as the markers have to follow
the perturbed trajectories. Linear simulation uses the dfs ansatz
fsðR; pk; ~l; tÞ ¼
def f0sðR; pk; ~lÞ þ dfsðR; pk; ~l; tÞ ð37Þ
in Eq. (1) and leads to the evolution equation for the perturbation to the distribution function dfs along the
unperturbed gyro-center trajectories of species s
d

dt

����
0

dfs ¼ �
d

dt

����
0

f0s �
d

dt

����
1

f0s ¼ �
d

dt

����
1

f0s; ð38Þ
where f0s is an exact solution of the unperturbed Vlasov equation df0s=dtj0 ¼ 0. For the GYGLES code [15]
which uses e.g. the gyro-center coordinates (R; pk; v?) the corresponding evolution equation for df is given by
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d

dt

����
0

dfs ¼
rhweffis � eB

BH

k
þ qs

ms
hAkisbH

 !
of0s

oR
þ v?rB

2B
of0s

ov?

� �
þ qs

ms
rhweffis � bH

of0s

opk
: ð39Þ
Integrating this equation, we can evolve the weights of the markers wsp ¼ XspdfsðtÞ which are time-depen-
dent and have already the property of being ‘‘noise reduced’’, �wsp ¼ wsp, as they evolve only the perturbation
to the particle number.

We have shown that the control variates method is used for both, the ‘‘direct df’’ and the df method. In a
further step, it can be enhanced to solve the inaccuracy problem described in Section 3. In contrast to the split-
weight scheme which actually splits the dfe ansatz of the electrons by introducing a time dependent control
variate, the evolution equation of dfs, Eq. (39), is not modified. Instead, the weights of the electron markers
are adapted (split) exclusively for the charge-/current-assignment so that only at this step a third, further
‘‘noise reduced’’ species of weights
ŵsp ¼ XspfdfsðtnÞ � �f s½dfsðtnÞ�g ð40Þ
is introduced. Here, �f s½dfsðtnÞ� is a control variate chosen exclusively for a certain point in time tn which has
the capability to be adjusted to a certain extent to the perturbation to the distribution function dfsðtnÞ.

6. The discretization of the control variates method with Galerkin’s method

In the following sections we discretize the control variates method for just one particle species s. If more
than one particle species is present, e.g. ions and electrons, the control variates method would have to be
applied separately for each gyro-center distribution function fs. Also to simplify matters, we will discretize
the control variates method by means of the charge-assignment procedure although its application will be
in Section 8 for both the charge- and current-assignment.

Let us suppose that the control variate �f is defined as a product ansatz
�f ðx; vÞ ¼def gðx; vÞ
XM

j¼1

cjBd
j ðxÞ with

Z 1

0

gðx; vÞdv ¼ 1; gðx; vÞ 6¼ 0; ð41Þ
where Bd
j ðxÞ is a product of 1-D B-splines of order d (tensor product B-splines, see e.g. Ref. [12]). A suitable

choice for e.g. a three dimensional discretization of a slab would be in Cartesian coordinates (x,y,z):
Bd
j ðxÞ ¼ Sd

aðxÞSd
bðyÞSd

c ðzÞ; ð42Þ
where the index j stands for the triplet (a,b,c) of indices. The boundary conditions would be Dirichlet in
x-direction, and periodic in y- and z-direction which can be easily implemented in the finite element formalism
(see e.g. Ref. [19]) on each dimension separately. Even complicated physical domains as e.g. stellarators have
been discretized with tensor product B-splines [20]. The B-spline sequence ðBd

j Þ consists of nonnegative func-
tions which sum to 1, i.e. in mathematical terms, ðBd

j Þ provides a partition of unity (see Ref. [19], p. 111), which
guarantees the conservation of particle number in the charge-assignment.

The coefficient vector c is used to adjust the control variate. For instance, it can be used to represent the
density n0 as it is the case for the conventional df method where a local Maxwellian, Eq. (8), is used as the
control variate
n0ðWÞ ¼
XM

j¼1

cjBd
j ðxÞ and gðW;~vÞ ¼def expð~vÞ

ð2pÞ3=2v3
thðWÞ

; ~v ¼def�
eE

v2
thðWÞ

: ð43Þ
Using a B-spline finite element basis for the discretization of the quasi-neutrality equation, the charge-assign-
ment vector can be rewritten with the control variates method, Eq. (35), discretizing the analytical and statis-
tical part corresponding to Eqs. (30) and (34)
~bk ¼
Z Z

�f pBd
k ðxÞdx dvþ

XNs

p¼1

ðfp � �f pÞBd
k ðxpÞXp ¼ �bk þ dbk: ð44Þ
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The contribution of the control variate �f to the charge-assignment can be written explicitly with two matrix
equations. Firstly, the contribution of the control variate itself
�b ¼ bAc; ð45Þ

where one finds again the mass matrix, Eq. (29), defined as M · M matrix
âkj ¼def
Z 1

0

Z
Bd

j ðxÞBd
k ðxÞgðx; vÞdx

� �
dv ¼

Z
Bd

j ðxÞBd
kðxÞdx ð46Þ
which is independent of the ðxp; vpÞ positions of the markers. Its matrix elements can be calculated e.g. numer-
ically with a Gaussian quadrature formula even for complicated geometrical configurations.

Secondly, the charge-assignment of the marker weights diminished by the contribution of the control var-
iate at the marker position is
dbk ¼
XNs

p¼1

ðfp � �f pÞXpBd
k ðxpÞ ¼

XNs

p¼1

fp � gðxp; vpÞ
XM

j¼1

cjBd
j ðxpÞ

" #
XpBd

k ðxpÞ ð47Þ
which can be written in the form of a matrix equation:
db ¼ b� Ac; ð48Þ

where
akj ¼
def
XNs

p¼1

Bd
j ðxpÞBd

k ðxpÞgðxp; vpÞXp ð49Þ

bk ¼
def
XNs

p¼1

XpfpBd
k ðxpÞ ¼

XNs

p¼1

wpBd
k ðxpÞ: ð50Þ
The matrix A will be called henceforth the diminishing matrix and it obviously depends on the ðxp; vpÞ posi-
tion of the markers. In principle, it has to be constructed for each call of the charge-assignment procedure
again.

Inserting Eqs. (45) and (48) into Eq. (44) we finally achieve for the charge-assignment vector
~b ¼ bAcþ b� Ac ¼ ðbA � AÞcþ b: ð51Þ

The scheme must be consistent in the sense that, for an infinite number of markers it must give ~b ¼ b.

Hence, the integration over the velocity sphere in Eq. (46) has to be consistent with the discretization limit
of the velocity sphere of the markers. In our simulations, we distribute the markers in a velocity sphere limited
by vmax ¼ jvvth. In the case of �f ¼ f0, Eq. (46) has to be recalculated:
âkj ¼
Z vmax

0

Z
Bd

j ðxÞBd
k ðxÞgðx; vÞdx

� �
dv ¼ Cv1

Z
Bd

j ðxÞBd
k ðxÞdx; ð52Þ
where
Cv1ðjvÞ ¼def
erf

jvffiffiffi
2
p
� �

�
ffiffiffi
2

p

r
jv exp � j2

v

2

� �
: ð53Þ
The generalization of the scheme derived in Eq. (51) for a gyro-averaged charge-assignment can be found in
Appendix A.

7. Adjustable control variates methods

In principle, one is completely free in the choice of the control variate. However, it is worth remarking that
a poorly chosen control variate can be worse than ineffective as it can lead to an increased statistical noise level
(for details see e.g. Ref. [21]). For evaluation purpose we define a quality measure r of the control variate �f as
follows:
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r ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
p¼1½spðfp � �f pÞ�2PNs

p¼1ðspfpÞ2

vuut : ð54Þ
The weighting factor sp specifies if the quality measure is used either to evaluate a control variate for a
charge-assignment sdenp ¼ Xp or a current-assignment scurp ¼ pkpXp. The quality measure gives us the possibil-
ity to quantify how close the control variate fits the gyro-center distribution function f and it should be r� 1
for an effective control variate with noise reduction property.

We will use now the degree of freedom of the B-spline representation in our control variate, Eq. (41),
fadjðxÞ ¼def
XM

j¼1

cjBd
j ðxÞ ð55Þ
to construct a control variate �f being adjusted to the gyro-center distribution function at each call of the
charge-assignment procedure.

If one has access to additional information about the structure of the gyro-center distribution function, it is
possible to use an heuristic approach for the construction of an adjustable control variate scheme. For
instance, the information could come from the knowledge of the equilibrium distribution function as e.g.
for the df method or it could come from the formalism used to derive the model equations or, even that is
possible, just intuition.

As an example, one could suppose for ion-temperature-gradient driven (ITG) mode simulation in the elec-
trostatic limit the presence of a dominant part responding adiabatically to the electrostatic potential / in the
perturbation of the distribution function dfeðR; pk; ~lÞ of the electrons. Hence, the resulting control variate
would be adjusted by the electrostatic potential /
�f e1ðx; vÞ ¼
def� en0

kBT e

fadj1ðxÞg1ðW;~vÞ; ð56Þ
where
fadj1ðxÞ ¼ /ðxÞ ¼
XM

j¼1

cð1Þj Bd
j ðxÞ; g1ðW;~vÞ ¼

def expð~vÞ
ð2pÞ3=2v3

theðWÞ
: ð57Þ
The construction of the corresponding scheme would be analog to the derivation given in Section 8.2 for
electromagnetic simulation.

In addition, we present two systematic approaches to derive the adjustable part, Eq. (55), of the control
variate:

(1) We construct a scheme herein after referred to as the moment adjusting scheme which determines the
adjustable part by the moments of the distribution function e.g. the number and/or current density.
For the derivation of its control variate we suppose that the product ansatz of the control variate,
Eq. (41), fits the gyro-center distribution function perfectly which is equivalent to set db ¼ 0 in Eq.
(48). Thus, the adjustable part of the control variate, the coefficient vector c, is determined by the
charge-assignment vector b
Ac ¼ b) c ¼ A�1b: ð58Þ
Inserting the coefficient vector c into Eq. (51) we derive:

~b ¼ ðbA � AÞA�1bþ b ¼ bAA�1b: ð59Þ
One can see again that in the limit of an infinite number of markers the derived scheme is consistent in
the sense ~b ¼ b as it is the case for Eq. (51). In Appendix B we will present an efficient iterative algorithm
to calculate the charge-assignment vector ~b.
(2) We construct a scheme herein after referred to as the least square fit scheme by adapting the control var-
iate in such a way that the quality measure r, Eq. (54), is minimized. This is done by just minimizing the
numerator
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v2 ¼
XNs

p¼1

s2
pðfp � �f pÞ2 ¼

XNs

p¼1

s2
p fp � gðxp; vpÞ

XM

j¼1

cjBd
j ðxpÞ

" #2

!Min: ð60Þ

The minimization is equivalent to a least square fit procedure to find the best-fitting curve to a given set
of data points by minimizing the sum of the squares of the offsets of the points from the curve. It is
important to note that there is a close connection between the minimization of v2 and the minimization
of the statistical error in PIC simulations. For instance, for nonlinear df simulation v with sp ¼ Xp is pro-
portional to the error of the particle number conservation (see Ref. [3]). The minimization gives the fol-
lowing least square fit matrix equation

Tc ¼ r; ð61Þ
where

tkj ¼
def
XNs

p¼1

s2
pBd

j ðxpÞBd
k ðxpÞg2ðxp; vpÞ ð62Þ

rk ¼
def
XNs

p¼1

s2
pfpBd

k ðxpÞgðxp; vpÞ: ð63Þ

Inserting again the coefficient vector c, Eq. (61), into Eq. (51) we derive:
~b ¼ ð

1
e summ

e

b �1
A � AÞT rþ b: ð64Þ

The assembly of the least square fit matrix T depends on the positions ðxp; vpÞ of the markers and has to
be built up for each call to the charge-/current-assignment procedure again. Only then, the least square
fit matrix equation, Eq. (61), can be either solved by a direct or iterative method.
Note that if the gyro-center distribution function f could be expressed exactly by the control variate �f of the
previous methods, there would be no longer a discretization error introduced by the charge-assignment pro-
cedure at all. In such a case, the quality measure would be r = 0. However, a significant noise reduction could
be still expected in all cases where the product ansatz, Eq. (41), is a good approximation to the gyro-center
distribution function f which can be tested by r� 1.

The aspects of the derived schemes in connection with the gyro-averaging process will be considered in
Appendix C.

8. Cancellation schemes for Ampère’s law

It is possible to perform electromagnetic PIC simulations with a conventional df-approach in slab geometry
using a B-spline discretization (see Ref. [4]). However, the required number of markers can be so large that
such PIC simulations become impractical. In this section five schemes are developed with the purpose to over-
come the inaccuracy problem described in Section 3. They are based on variations of the control variates
method (see Section 7) and can be seen as supplements to the df-discretization using B-splines. A concise sum-
mary of the schemes and their concepts is given in Table 1.
ary of the derived schemes in Section 8

Section Control variate Iterative Concept

8.1 n0 – n0 cancellation
8.2 n0 þ AkðtnÞ No jad

ke cancellation

8.2 n0 þ AkðtnÞ Yes jad
ke cancellation

8.3 n0 þ jkeðtnÞ No Moment adjusting
8.3 n0 þ jkeðtnÞ Yes Moment adjusting
8.4 n0 þ AkðtnÞ No Least square fit



R. Hatzky et al. / Journal of Computational Physics 225 (2007) 568–590 579
8.1. The conventional df scheme for Ampère’s law

A standard df discretization of Ampère’s law in the long-wavelength approximation, Eq. (16), with
B-splines would be (see e.g. Ref. [4]):
ðbL þ bSi þ bSeÞc ¼ l0ðhjii þ jeÞ; ð65Þ

where the matrices are defined as
l̂kj ¼def
Z
ð1� Cv2biÞr?Bd

j ðxÞ � r?Bd
kðxÞdx ð66Þ

ŝikj ¼
def Cv2

Z
bi

~q2
i

Bd
j ðxÞBd

k ðxÞdx ð67Þ

ŝekj ¼def Cv2

Z
be

~q2
e

Bd
j ðxÞBd

k ðxÞdx: ð68Þ
Note that the correct normalization of the skin terms in Ampère’s law [4] is of importance. The correspond-
ing normalization constant is
Cv2ðjvÞ ¼ erf
jvffiffiffi

2
p
� �

�
ffiffiffi
2

p

r
jv 1þ j2

v

3

� �
exp � j2

v

2

� �
ð69Þ
which takes into account the finite extent of the discretized velocity sphere vmax ¼ jvvth [see also Eq. (53)]. The
discretized current-assignment vector je of the electrons can be written as
jek ¼
def
XN e

p¼1

pkpwepBd
k ðxpÞ ð70Þ
and the corresponding gyro-averaged current-assignment vector of the ions is (see Appendix A):
hjiki ¼
def 1eN ip

XN i

p¼1

pkpwip

XeN ip

m¼1

Bd
k ½Rp þ qm

ip�: ð71Þ
8.2. Adjusting the control variate by the solution Ai (scheme one and two)

In Ampère’s law the skin terms cancel with the adiabatic current (see Section 3). The control variates
method enables us to directly implement the cancellation of terms into the numerical scheme.

We want to show that the two schemes [10,22] presented recently can be derived rigorously with the control
variates method. The key idea is to define the control variate as the part responding adiabatically to the mag-
netic potential hAkie, Eq. (23), in the perturbation of the distribution function of the electrons:
�f e2ðx; vÞ ¼def� en0ðxÞ
me

fadj2ðxÞg2ðW;~vÞ; ð72Þ
where
fadj2ðxÞ ¼ AkðxÞ ¼
XM

j¼1

cjBd
j ðxÞ; g2ðW;~vÞ ¼

def pk expð~vÞ
ð2pÞ3=2v5

theðWÞ
: ð73Þ
Note that the coefficient vector c is identical with the coefficient vector in Eq. (65).
The matrix representation of the control variates method [see also Eq. (51)] is given by
l0
~je ¼ ðbSe � SeÞcþ l0je; ð74Þ
where the diminishing matrix Se is defined as
sekj ¼def l0e2

me

XN e

p¼1

n0ðxpÞBd
j ðxpÞBd

kðxpÞpkpg2ðxp; vpÞXep: ð75Þ
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The conventional df scheme, Eq. (65), can now be replaced by a scheme derived with the control variates
method:
bL þ ðbSi þ bSeÞc ¼ l0hjii þ ðbSe � SeÞcþ l0je: ð76Þ
Moving all analytical terms to the left-hand-side and solving for c we end up with the scheme presented in
Ref. [22] herein after referred to as scheme one:
c ¼ ðbL þ bSi þ SeÞ�1l0j where j ¼defhjii þ je: ð77Þ

Usually, in PIC simulations a Fourier filter is imposed onto the coefficient vector c to filter out the high

fluctuating modes to further reduce the noise level (see e.g. Refs. [4,16]). On the one hand, the Fourier filtered
coefficient vector
~c ¼def
F½c� ¼F½ðbL þ bSi þ SeÞ�1l0j� ð78Þ
represents the solution of Ampère’s law and, on the other hand, determines the spatial part of the new, Fourier
filtered, control variate. If this is set in again on the right-hand-side of Eq. (76) we derive,
�c ¼F½ðbL þ bSi þ bSeÞ�1½ðbSe � SeÞ~cþ l0j�; ð79Þ

an enhanced form of scheme one with a better convergence rate in respect to the number of markers Ne (see
Section 9.2).

It is also possible to derive an iterative version of scheme one by keeping the right-hand-side of Eq. (76) as it
is and just solving for the coefficient vector on the left-hand-side
c ¼ ðbL þ bSi þ bSeÞ�1½ðbSe � SeÞcþ l0j�: ð80Þ

We handle this equation as an implicit equation which could not be solved explicitly for c. Hence, we use

the iterative method [10] including already a Fourier filter herein after referred to as scheme two:
~cðnþ1Þ ¼FfðbL þ bSi þ bSeÞ�1½ðbSe � SeÞ~cðnÞ þ l0j�g; ð81Þ

where
~cð0Þ ¼F½ðbL þ bSi þ bSeÞ�1l0j�: ð82Þ

Appendix B can be generalized to show that in the absence of a Fourier filter scheme two converges to

scheme one under the restriction:
kðbSe � SeÞðbL þ bSi þ bSeÞ�1k < 1: ð83Þ

This restriction will be fulfilled for a sufficiently large number of markers Ne as the matrix Se converges tobSe for N e !1.
Scheme two has two advantages compared to scheme one. On the one hand, it is possible to avoid the inver-

sion of the matrix bL þ bSi þ Se which would have to be constructed for each current-assignment procedure.

Instead, the matrix bL þ bSi þ bSe could be LU decomposed once and reused throughout the whole simulation
(see also Appendix B). This is especially useful in situations when the iterative scheme converges already after
one or two iterations. On the other hand, the Fourier filter can be easily integrated into the scheme by the
Fourier filtered coefficients ~cðnÞ and additionally improves the convergence rate of the iterative scheme signif-
icantly. And finally, it gives better results for very small number of markers Ne than the enhanced scheme one,
Eq. (79).
8.3. Adjusting the control variate by the current (scheme three and four)

The limitation of scheme one and two is that the choice of the adjusted control variate, Eq. (72), is only able
to reproduce part of the electron current density jke analytically namely the adiabatic electron current density
jad
ke . Hence, we adjust now the control variate in a more systematic approach (see Section 7) to represent the

total current density jke of the electrons herein after referred to as scheme three:
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�f e3ðx; vÞ ¼
def fadj3ðxÞg2ðW;~vÞ and f adj3ðxÞ ¼ �

jkeðxÞ
e
¼
XM

j¼1

cð3Þj Bd
j ðxÞ; ð84Þ
where the current mass matrix bGe and the current diminishing matrix Ge are defined as
ĝekj ¼
def�e

Z vmax

0

Z
Bd

j ðxÞBd
k ðxÞpkg2ðx; vÞdx

� �
dv ¼ �eCv2

Z
Bd

j ðxÞBd
k ðxÞdx; ð85Þ

gekj ¼
def�e

XN e

p¼1

Bd
j ðxpÞBd

k ðxpÞpkpg2ðxp; vpÞXep: ð86Þ
According to Eq. (58) the control variate can be adjusted by
cð3Þ ¼ G�1
e je ð87Þ
so that the refined current density vector [see also Eq. (59)] is given by
~je ¼ ðbGe �GeÞcð3Þ þ je ¼ bGeG
�1
e je: ð88Þ
Scheme three can be adapted further for a Fourier filtered control variate by
~je ¼ ðbGe �GeÞFðG�1
e jeÞ þ je: ð89Þ
Alternatively, it is possible to derive (see Appendix B) an iterative version, Eq. (B.5), of scheme three herein
after referred to as scheme four:
~je �
XN it

n¼0

jðnÞe where jðnþ1Þ
e ¼ je �Ge~c

ðnÞ; ~cðnÞ ¼F bG�1
e

Xn

i¼0

jðiÞe

 !
; ð90Þ
where jð0Þe ¼ je and Nit the number of iterations. The condition of convergence is
kI�GbG�1k < 1 ð91Þ

which is fulfilled for a sufficiently large number of markers Ne as the matrix G converges to bG for N e !1.

8.4. Adjusting the control variate by a least square fit (scheme five)

Beside the schemes introduced so far it is also possible to discretize Ampère’s law with the least square fit
scheme derived in Section 7. The matrix Te, Eq. (62), and the vector re, Eq. (63) have to be built up with the
electron markers Ne for gðxp; vpÞ ¼ g2ðxp; vpÞ and sp ¼ pkpXp. Inserting the coefficient vector c, Eq. (61), into
Eq. (88) and imposing a Fourier filter we derive the least square fit scheme herein after referred to as scheme
five:
l0
~je ¼ ðbGe �GeÞFðT�1

e reÞ þ l0je: ð92Þ
8.5. Including the control variate in the charge-assignment procedure

The schemes presented so far would not handle the inaccuracy problem in the quasi-neutrality equation
properly, Eq. (24). After Ampère’s law has been solved with one of the noise reduction schemes one to five,
the control variate �f e2, Eq. (72), can be applied to the charge-assignment procedure (see Ref. [10]) of the quasi-
neutrality equation:
~be ¼ ðbUe �UeÞ~cþ be ¼ be �Ue~c; ð93Þ

where
ûekj ¼def� e
me

Z Z
n0ðxÞBd

j ðxÞBd
k ðxÞg2ðx; vÞdxdv ¼ 0; ð94Þ

uekj ¼
def� e

me

XN e

p¼1

n0ðxpÞBd
j ðxpÞBd

k ðxpÞg2ðxp; vpÞXep: ð95Þ
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We suppose here that be is the electron charge-assignment vector calculated either with the ‘‘direct df’’ or df

method (see Section 5).
9. Simulations

9.1. Numerical methods

We use the GYGLES code originally written for linear gyrokinetic df PIC simulations in toroidal geometry
[15]. The version used here has been extended to electromagnetic perturbations [see e.g. Eq. (39)] and its
numerical methods are described in detail in Ref. [4]. All five schemes derived in Section 8 have been imple-
mented in the GYGLES code which uses a finite element discretization with B-splines for the quasi-neutrality
equation, Eq. (15), and Ampère’s law, Eq. (16).

9.2. Shear Alfvén waves in the MHD limit k? ! 0

9.2.1. The numerical model parameters

Our model problem consists of a damped shear Alfvén wave simulated in a slab with the field equations,
Eqs. (15) and (16), where we have excluded the ion sound wave by suppressing the (parallel) motion of the
ions, i.e. by setting bi ¼ 0 and dfi ¼ 0.

The mode wave numbers are kx~qi ¼ 0:023; ky ~qi ¼ 0:015 and kz~qi ¼ 7:43� 10�4. The box size is given by
Lx=qi ¼ 273; Ly=qi ¼ 419 and Lz=qi ¼ 8457 which corresponds to the Wendelstein 7-X stellarator [23] in its
cylindrical approximation [4]. The ratio of the ion mass (deuteron) to the electron mass is mi=me ¼ 3670.
We consider a homogeneous plasma without any gradients and with equal ion and electron temperature
T i ¼ T e ¼ 5 keV and two high beta cases, be ¼ 3:04% and be = 30.4% corresponding to the number den-
sities of n0 ¼ 1:89� 1020 particles=m3 and n0 ¼ 1:89� 1021 particles=m3 with a magnetic field of B =
2.5 T. Four quadratic B-splines in radial (x-)direction are sufficient [4] while a phase factor transformation
[15] is used in the parallel (z-)direction on top of four quadratic B-splines. All schemes derived in Section 8
include a Fourier filter in both the x- and z-direction. The loading of the markers in velocity space is
uniform in the ðpk; v?Þ-plane and consequently guarantees in contrast to a Maxwellian allocation a good
sampling rate at high velocities. The time step has been converged to Dt ¼ 12=Xci where Xci ¼ 120�
106 rad=s.

The solution of the dispersion relation for the warm electron response of xA � kkvthe becomes for the fre-
quency of the shear Alfvén wave (see Ref. [6]):
xA ¼ �kkvA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk?~qiÞ2

q
where vA ¼

def Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0min0
p : ð96Þ
For the case of be = 3.04% we get vA ¼ 2:805� 106 m=s and xA=Xci ¼ 4:2601� 10�3 which is plotted for
benchmark purpose as a dashed line in Figs. 2–4(a). The values for the very high beta case, be = 30.4%,
are vA ¼ 8:872� 105 m=s and xA=Xci ¼ 1:3472� 10�3 which is plotted as dashed line together with the corre-
sponding simulation results in Fig. 4(b).

9.2.2. The illustrated inaccuracy problem

Our focus is on the simulation in the MHD limit k? ! 0 because it is the most challenging test case for the
inaccuracy problem as the adiabatic part of the electron response to hAkie becomes the dominant part of the
perturbation to the distribution function dfe.

Fig. 1 shows the velocity sphere of the electrons in pitch-angle f ¼ arctanðv?=pkÞ and velocity v normalized
to the thermal velocity vthe. The absolute value of the sum over the weights �wep divided by the Jacobian J = v is
plotted as a function of the polar coordinates ðf; v=vtheÞ. In Fig. 1(a), we can see the exposed adiabatic part of
dfe. In Fig. 1(b), the ‘‘noise reduced’’ weights ŵep, Eq. (40), have been plotted. It is impressive to see that the
structure of the nonadiabatic part is four orders of magnitude smaller than the adiabatic part. Additionally,
the nonadiabatic part is focused around f = 0 where the electrons have no pi-component.
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Fig. 1. The perturbed particle number in velocity space as a function of pitch-angle f and normalized velocity v/vthe for the case of
be = 3.04%. In (a), adiabatic and nonadiabatic electrons, in (b), only the much smaller (�10�4) nonadiabatic part of the electrons.
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9.2.3. Improvements in respect to the conventional df scheme

In the following, we will show a convergence study of the oscillation frequency xA=Xci of the shear Alfvén
wave in respect to the number of electron markers Ne for different schemes. By means of Fig. 2 improvements
in respect to the conventional df scheme with a Fourier filtered solution vector [4] are presented for the case of
be = 3.04%.

The conventional df (filled circles) needs a large velocity sphere of jv ¼ 6:75 and a large number of markers
N e � 107 to converge to the correct result. The usage of the correct normalization of the skin terms, Eq. (69),
in Ampère’s law (stars), gives already an improvement of one order of magnitude in the number of markers
required. This is due to the fact that the velocity sphere could be significantly reduced to jv ¼ 4 (see Ref. [4]).
The next reduction of one order of magnitude in Ne is achieved using scheme one (squares) in its rudimentary
form, Eq. (77), published in Ref. [22].

However, scheme one is not implemented correctly as long as the control variate is not included in the
charge-assignment procedure (triangles), Eq. (93), which leads to a further reduction of one order of magni-
tude in Ne for converged results. For a slab simulation nearly the same result (down triangles) can be achieved
with scheme one in its rudimentary form when the markers are initially distributed symmetrically around the
pitch-angle f = 0 in velocity sphere. In this case, the numerical evaluation of the integral, Eq. (24), is by con-
struction zero. Unfortunately, for more realistic configurations, the latter method would not be practicable as
the marker positions would evolve during the simulation for both velocity spheres, �pk, differently.

Finally, a reduction of more than one order of magnitude in Ne can be achieved by a Fourier filtered con-
trol variate (open circles) used in scheme two [10].
0.42

0.44

0.46

x 10
-2

10
2

10
3

10
4

10
5

10
6

10
7

Ne

ω
/Ω

ci

Fig. 2. Convergence study of the frequency x=Xci of the shear Alfvén wave in respect to the number of electron markers Ne for the case of
be = 3.04%. Solutions of the dispersion relation (dashed), conventional df scheme (filled circles), skin term normalization (stars), scheme
one as in Ref. [22] (squares), control variate implemented in charge-assignment (triangles), symmetric distribution of markers in velocity
sphere (down triangles) and scheme two (10 iterations) [10] (open circles).
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If we sum up all improvements, beginning with the conventional df scheme and ending at the final form of
scheme one, a reduction by more than four orders of magnitude in Ne can be observed for the same quality of
results. Thus, the execution time of the simulation can be sped up drastically.

9.2.4. Comparison of the derived schemes

In Fig. 3, the frequency xA=Xci of the shear Alfvén wave simulation as a function of Ne is shown in (a) as
result of scheme one and two and in (b) as result of scheme three and four (see Section 8) for the case of
be = 3.04%. The results of the iterative scheme two and four are presented for different numbers of iterations:
one (filled circles), two (stars), three (squares) and ten (triangles). It can be clearly seen that for an increasing
number of iterations the convergence property in Ne improves. Already for two iterations only N e � 1000 are
sufficient for converged results. Thereby the difference between the results of scheme two and four are very
small for one and two iterations. Only for higher numbers of iterations and N e < 300 the difference does
become apparent. It is also to note that for a large number of iterations scheme two converges to enhanced
scheme one, Eq. (79), (open circles) as long as N e > 70 and correspondingly scheme four to scheme three (open
circles). For very small numbers of electron markers N e < 80 scheme one and two differ as the implementation
of the Fourier filtered control variate differs.

Finally, in Fig. 4(a) and (b), we compare the iterative schemes two (circles) for 10 iterations (converged iter-
ative results) and the direct schemes three (stars) and five (squares) with each other.
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Fig. 3. Convergence study of the frequency x=Xci of the shear Alfvén wave in respect to the number of electron markers Ne for the case of
be = 3.04%. Solution of the dispersion relation (dashed). In (a) scheme one (open circles) and iterative scheme two; in (b) scheme three
(open circles) and iterative scheme four. The number of different iterations are: one (filled circles), two (stars), three (squares) and ten
(triangles).
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Fig. 4. Convergence study of the frequency x=Xci of the shear Alfvén wave in respect to the number of electron markers Ne for the case of
be = 3.04% in (a) and be = 30.4% in (b). Solutions of the dispersion relation (dashed), scheme two (circles) for 10 iterations, scheme three
(stars) and scheme five (squares).
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In Fig. 4(a), for the case of be = 3.04% all schemes show converged results in the 1% range in respect to the
number of electron markers for N e J 180. Similar convincing results could be already achieved with the iter-
ative schemes two and four for only three iterations. For N e > 70 the least square fit scheme (five) shows better
results than the moment adjusting scheme (three). However, all three schemes give similar results in the MHD
limit as the control variates of all three schemes have the same velocity dependence and differ only in their
spatial parts.

In Fig. 4(b), for the case of be = 30.4% the results of all three schemes are nearly identical. Increasing be by
an order of magnitude makes the adiabatic part of the distribution function df ad

e even more dominant over the
nonadiabatic part df nonad

e . In the limiting case of a vanishing nonadiabatic part all three schemes provide iden-
tical results. The number of electron markers needed for converged results in the 1% range is N e J 300 which
is in the same range of markers needed for converged results in Fig. 4(a). Thus, the accuracy of the results is
hardly influenced by an increase of be by an order of magnitude although the inaccuracy problem becomes
much more pronounced. This remarkable property of the new schemes is in strict contrast to the performance
of the conventional df scheme.

10. Conclusions

We have shown that the inaccuracy problem of electromagnetic gyrokinetic PIC simulation, due to the
domination of the adiabatic part of the electron response to the magnetic potential hAkie, can be handled
with an adjustable control variates method. Based on this method we have derived five schemes (see Table
1) which can be sub-classified into three direct schemes (one, three and five) and the two iterative counter-
parts of schemes one and three called scheme two and four. The iterative schemes can be advantageous in
respect to computational effort, if a matrix inversion mandatory for each charge-/current-assignment proce-
dure could be handled with an LU decomposition calculated only once at the initialization process of the
code.

For the simulation of shear Alfvén waves in a slab at the MHD limit k? ! 0 a reduction of more than four
orders of magnitude in the number of electron markers Ne can be achieved compared to the conventional df

scheme. The converged results have a relative error of only � 10�4 in the oscillation frequency xA with respect
to the analytic solution of the dispersion relation. All five schemes reach converged results in the <1% range
with J 300 electron markers. The basic convergence property with Ne seems to be nearly unaffected by an
increase of be by one order of magnitude from be = 3.04% to be = 30.4%. Thus, a significant increase of
the inaccuracy problem seems to have very little effect on the accuracy of the derived schemes.

The wave numbers used in our simulations correspond with the m = 1 mode in actual plasma devices, e.g.
the Wendelstein 7-X stellarator [23]. Accurate computation of low-m modes is necessary for nonlinear simu-
lation of plasma turbulence, where all modes are coupled and self-generated zonal flows have to be treated
correctly. Even electromagnetic simulations of modes with moderate k^ benefit from the schemes derived here.
As the conventional df method can be used for linear and nonlinear simulations as well as for three-dimen-
sional configurations, all the derived schemes have preserved this vast applicability without any restriction.
The required adaptations of an existing df code are small and only a moderate amount of additional compu-
tational time per marker is needed.

The pi-formalism gives the information needed to construct heuristically scheme one and two for the par-
ticular case we have considered here. The control variate is tuned especially for this regime. Schemes three,
four and five use a control variate with the same velocity dependence as schemes one and two but a more sys-
tematically derived adjustable spatial part. These schemes are derived under more general assumptions and
would be advantageous for other cases where the adiabatic response to Ai is not the dominate part in the dis-
tribution function. However, for the simulation of shear Alfvén waves in the MHD limit all schemes give sim-
ilar good results.

In general, the control variates method takes advantage of the information about the shape, i.e. the
smoothness, of the distribution function f ðx; vÞ which is usually not considered in the charge-/current-assign-
ment procedure. The control variate could be adapted to include any part of the ion/electron distribution
function fi,e. The systematic approach in deriving the adjustable control variate (see Section 7) could be
extended to velocity space. For example, moments of the distribution functions fi,e could be calculated to
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adjust the control variate in velocity space. One of the most general systematic approaches would be a five
dimensional B-spline fit function. In such a case, the resolution of the velocity grid could be quite coarse to
represent only the coarse structure of the distribution functions fi,e.

The fine structures would be still represented by the weights of the markers which would act as the com-
plement. Such a ‘‘two scale’’ method would have the characteristics of a hybrid method between Semi-
Lagrangian (see e.g. Ref. [24]) and PIC method as the main part of the distribution functions would be rep-
resented ‘‘noise free’’ on the coarse grid.
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Appendix A. Gyro-averaged charge-assignment with the control variates method

Keeping the structure of the discretized control variates method derived in Eq. (51), we can generalize it for
a gyro-averaged charge-assignment
h~bi ¼ ðhbAi � hAiÞcþ hbi; ðA:1Þ

where the symbols h�i are a way to indicate the now modified vectors and matrices in Appendices A and C.

The gyro-averaged charge-assignment vector hbi, originating from Eq. (11), can be discretized in the
B-spline basis by
hbki ¼
1

2p

XNs

p¼1

wp

I
Bd

k ½Rp þ qpðaÞ�da: ðA:2Þ
The integral over the gyro-phase angle a is usually discretized with an N-point discrete sum (see Refs.
[25,16]) of gyro-points distributed equidistantly over the gyro-ring:
1

2p

I
Bd

k ½Rp þ qpðaÞ�da � 1eN p

XeN p

m¼1

Bd
k ½Rp þ qm

p� ðA:3Þ
with
qm
p ¼

def
qp½cosðam

pÞe?1 þ sinðam
pÞe?2�; am

p ¼
def 2pmeN p

þ ~ap; ðA:4Þ
where e?1 and e?2 are the unit vectors perpendicular to the magnetic field direction. The gyro-points eN p are
equidistantly distributed over the gyro-ring and rotated for the particle p by a random gyro-phase shift ~ap. The
number of gyro-points eN p used for the gyro-average of each marker is a linear increasing function of the gyro-
radius qp with a minimum of eN p ¼ 4 for qp 6 ~q where ~q is the thermal gyro-radius. Inserting Eq. (A.3) into
Eq. (A.2) we finally achieve for the gyro-averaged charge-assignment vector
hbki ¼
1eN p

XNs

p¼1

wp

XeN p

m¼1

Bd
k ½Rp þ qm

p�: ðA:5Þ
The control variate can be chosen now either as a function of the gyro-center coordinate R or the coordi-
nate x of configurational space:

Firstly, we will choose two control variates as function of the gyro-center coordinate R:

(1) The simple choice is to subtract the control variate at the gyro-center position from the gyro-center dis-
tribution f ðR; vÞ
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�f 1ðR; pk; ~lÞ ¼
def gðR; vÞ

XM

j¼1

cð1Þj Bd
j ðRÞ: ðA:6Þ

In this case, one gets for the corresponding matrices:

hâ1kji ¼
def 1

2p

Z
Bd

j ðRÞgðR; vÞBH

k

I
Bd

kðxÞdðRþ qðaÞ � xÞdadRdpk d~ldx ðA:7Þ

ha1jki ¼
def
XNs

p¼1

Bd
j ðRpÞgðRp; vpÞXp

1eN p

XeN p

m¼1

Bd
k ½Rp þ qm

p�: ðA:8Þ
(2) Furthermore, the control variate can be gyro-averaged and subtracted at the gyro-center position from
the gyro-center distribution f ðR; vÞ
�f 2ðR; pk; ~lÞ ¼
def gðR; vÞ

XM

j¼1

cð2Þj
1

2p

I
Bd

j ðRp þ qÞda: ðA:9Þ

which would be either useful for h/i or hAki as the adjustable part of the control variate (see Section 8.2).
The corresponding matrices are

hâ2kji ¼
def
Z

gðR; vÞBH

k
1

2p

I
Bd

j ðRp þ qÞda

1

2p

I
Bd

k ðxÞdðRþ qðaÞ � xÞdadRdpk d~ldx ðA:10Þ

ha2jki ¼def
XNs

p¼1

gðRp; vpÞXp
1eN p

XeN p

m¼1

Bd
j ½Rp þ qm

p�
1eN p

XeN p

m¼1

Bd
k ½Rp þ qm

p�: ðA:11Þ

which can be also utilized for a solver of the field equations, Eqs. (9) and (10) (see Ref. [26]).
Secondly, the control variate can be chosen as a function of Rþ q to subtract it from the gyro-center dis-
tribution function on the gyro-ring
�f 3ðRþ q; pk; ~lÞ ¼
def

gðRþ q; vÞ
XM

j¼1

cð3Þj Bd
j ðRþ qÞ: ðA:12Þ
In this case, we derive the following matrices:
hâ3kji ¼
def 1

2p

Z I
gðRþ q; vÞBd

j ðRþ qÞ

Bd
k ðxÞdðRþ qðaÞ � xÞdaBH

k dRdpk d~ldx ðA:13Þ

ha3jki ¼
def
XNs

p¼1

Xp
1eN p

XeN p

m¼1

Bd
j ½Rp þ qm

p�Bd
k ½Rp þ qm

p�gðRp þ qm
p; vpÞ: ðA:14Þ
Note that only the matrices of Eqs. (A.10), (A.11), (A.13) and (A.14) are symmetric.
It is a key issue of the control variates method that the matrices hbA1i; hbA2i and hbA3i defined by Eqs. (A.7),

(A.10) and (A.13) are calculated as well as the mass matrix, Eq. (46), analytically or at least with a very high
precision. Usually, these matrices have to be built up only once at the initialization process of the simulation
so that the computational costs for such an assembly can be quite large without changing the overall perfor-
mance too much. In such a case, it would be possible e.g. to use a further Monte Carlo integration consisting
of a much larger number of Monte Carlo particles than markers in the PIC simulation. In addition, one could
benefit from an importance sampling technique which would distribute the Monte Carlo particles propor-
tional to the control variate to further reduce the statistical error in the integration of Eqs. (A.7), (A.10)
and (A.13). However, this statistical error has to be much smaller than the statistical noise introduced by
the charge-assignment procedure of the PIC method itself.
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Appendix B. An iterative control variates method

The moment adjusting scheme derived in Section 7, includes the construction of the mass matrix, Eq. (46),
and the diminishing matrix, Eq. (49). The mass matrix is independent of the marker positions and can be cal-
culated at the initialization process of the code. Supposed that the mass matrix is not too large, it would be
possible to perform an LU decomposition only once which could be used later for inversion purpose with a
forward and back substitution of OðN 2Þ operations. In contrast to this, the diminishing matrix A has to be
calculated at every charge-assignment procedure as it depends on the marker positions which are functions
of time. Its inverse A�1 which would be needed in Eq. (59) would have to be calculated consecutively with
OðN 3Þ operations.

In the following, we will present an iterative control variates method just using the LU decomposition of

the mass matrix bA. Starting with Eq. (59) we derive
~b ¼ bAA�1b ¼ ðAbA�1Þ�1
b ¼ ½I� ðI� AbA�1Þ��1

b;

¼ ðI�MÞ�1
b ¼

X1
i¼0

Mib ¼
X1
i¼0

bðiÞ
ðB:1Þ
where
M ¼def
I� AbA�1 and bðiÞ ¼def

Mib; bð0Þ ¼def
b: ðB:2Þ
We used here the Neumann series which can be useful for the approximate inversion of matrices close to the
identity matrix. It has the necessary and sufficient convergence condition that M has to be a square matrix
with norm kMk < 1 with the consequence that the eigenvalues of the matrix have to be jkr j< 1. As the num-
ber of markers Ns is increased the matrices bA and A are getting closer to each other and finally they become
identical in the limit Ns !1. Hence, for a sufficiently large number of markers the convergence condition will
be fulfilled.

If we approximate ðI�MÞ�1 with a n-term Neumann series, n > 1
ðI�MÞ�1
b �

Xn�1

i¼0

Mib ¼
Xn�1

i¼0

bðiÞ ¼def ~bðn�1Þ ðB:3Þ
the ~bðn�1Þ vector can be interpreted to be assembled by a control variates method. The recursive relation for the
construction of the bðnþ1Þ term is
bðnþ1Þ ¼MbðnÞ ¼ bðnÞ � AcðnÞ where cðnÞ ¼def bA�1bðnÞ: ðB:4Þ

For an efficient algorithmic implementation of Eq. (B.4) we rewrite it in a more convenient form
bðnþ1Þ ¼ b� AĉðnÞ where ĉðnÞ ¼def bA�1
Xn

i¼0

bðiÞ: ðB:5Þ
Now only the b vector and the result of the (n + 1)-term Neumann series have to be stored. For each iter-
ation step the resulting charge-assignment vector can be written as
~bðnþ1Þ ¼
Xn

i¼0

bðiÞ þ bðnþ1Þ ¼ bA bA�1
Xn

i¼0

bðiÞ þ b� AĉðnÞ ¼ ðbA � AÞĉðnÞ þ b: ðB:6Þ
Thus, if one compares Eq. (B.6) with Eq. (59), one can see that for an infinite number of iterations n =1
the control variate ĉð1Þ has to converge to the control variate of the moment adjusting scheme:
ĉð1Þ ¼ bA�1
X1
i¼0

bðiÞ ¼ A�1b: ðB:7Þ
If one integrates a Fourier filter into the scheme by imposing it in Eq. (B.5) on ~cðnÞ ¼F½ĉðnÞ� the conver-
gence rate of the iterative scheme can be improved significantly. In practice it has been shown that already
after a few iterations the iterative control variates method gives a sufficiently good noise reduction. Hence,
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further iterations are not necessary and the computational costs are smaller than with the direct moment
adjusting scheme which has to perform an LU decomposition instead. Another advantage of a Fourier filtered
control variate is a better convergence rate in respect to the number of markers (see Sections 8 and 9).

Appendix C. Gyro-averaged charge-assignment with adjustable control variates methods

Both adjustable control variate schemes (see Section 7) can be generalized for a gyro-averaged charge-
assignment. In the case of the moment adjusting scheme, the control variate is given e.g. by [see Eq. (58)]
c ¼ hAi�1
3 hbi: ðC:1Þ
The matrix hAi3, Eq. (A.13), is in contrast to the matrix hAi1, Eq. (A.7), symmetric which is an important
property as it has to be inverted here. Inserting Eq. (C.1) into Eq. (A.1) one can derive the gyro-averaged
moment adjusting scheme in its simple form:
h~bi ¼ hbAi3hAi�1
3 hbi: ðC:2Þ
The control variate for the gyro-averaged least square fit scheme can be derived with a minimization of the
squares of the offsets at the position of the gyro-points
v2 ¼
XNs

p¼1

s2
p

1eN p

XeN p

m¼1

f ½Rp þ qm
p� � gðRp þ qm

p; vpÞ
XM

j¼1

cjBd
j ½Rp þ qm

p�
" #2

!Min ðC:3Þ
which gives the following matrix equation
hTic ¼ hri; ðC:4Þ

where
htjki ¼def
XNs

p¼1

s2
p

1eN p

XeN p

m¼1

Bd
j ½Rp þ qm

p�Bd
k ½Rp þ qm

p�g2ðRp þ qm
p; vpÞ ðC:5Þ

hrki ¼
def
XNs

p¼1

s2
pfp

1eN p

XeN p

m¼1

Bd
j ½Rp þ qm

p�gðRp þ qm
p; vpÞ: ðC:6Þ
Inserting again Eq. (C.5) into Eq. (A.1) we finally derive for the least square fit scheme:
h~bi ¼ ðhbAi3 � hAi3ÞhTi�1hri þ hbi: ðC:7Þ

Note that the coefficient vector c of the schemes derived in this section can be Fourier filtered again to improve
the schemes.
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